UNIVERSITY OF PisA
COMPUTER ENGINEERING — SOFTWARE SYSTEMS ENGINEERING

UML and Unified Process

Mario G. C. A. Cimino - Antonio Luca Alfeo

>

1/80

1. The Unified Process

v" A Software Development Process (SDP) defines the who, what, when, and how of
developing software. The Unified Process (UP) is an industry standard SDP from the
authors of the UML (Unified Modeling Language).

business
requirements

Unified Process

v UP is iterative and incremental: a large software development project is broken down
into smaller “mini projects” called iterations. Each iteration generates a more
complete version of the final system. The difference between two consecutive versions
Is called increment.

2/80

v" Each iteration is made by five core workflows, with different emphasis:

e R: requirements — capturing what the system should do;

e A: analysis — refining and structuring the requirements;

e D: design — realizing the requirements in system architecture;
e |: implementation — building the software;

e T: test — verifying that the implementation works as desired.

v" In a team work, it is often convenient to schedule iterations in parallel, according to
dependencies between the artifacts of each iteration.

v" UP consists of a sequence of four phases, terminating with related milestones:

: , Initial
: Life Cycle Life Cycle —"\) Product
Milest
estone Objectives :> Architecture — Obeilty :> Release :>

Capability

Phase Inception Elaboration Construction

lterations élteﬂ > >Iter 2> >Iter 3> >Iter 4> >Iter 5>

Fi A RN
workflows ZEIAYDY DT

3/80

Inception Elaboration Construction Transition

/

Requirements
~

Analysis

Design

Implementation

L))

Test

Preliminary 11 12 In In+1 In+2 Im Im+1
iterations

UP: core workflows versus phases

v" Inception: most of the work in early requirements and analysis
Elaboration: the emphasis on requirements and analysis and some design
Construction: mostly design and implementation, with related testing
Transition: residual implementation and test

4180

PHASE GOALS FOCUS MILESTONE

Inception ecapturing essential requirements to help erequirements and analysis el ife Cycle
scope the system workflows Obijectives
efeasibility: technical prototype to validate | esome design and implementation, | (requirements/
technology, proof of concept to validate to build technical prototype or features/constraints,
business requirements proof of concept initial use cases)
ebusiness case to demonstrate that the e no testing — throwaway prototype | — see conditions and
project will deliver quantifiable business deliverable table
benefit

Elaboration | e create executable architectural baseline erequirements, analysis and el ife Cycle

ecapture use cases to 80% functional
requirements;

e refine the Risk Assessment;

edefine quality attributes (defect discovery
rates, acceptable defect densities, etc.);

e create detailed plan for construction;
eformulate a bid that includes resources,
time, equipment, staff and cost.

design workflows
eimplementation: build the initial
operational capability

etest the initial operational
capability (alpha test, internal)

Architecture

Construction

ecomplete requirements, analysis and
design

e move from architectural baseline to the
final system

e maintain the system architecture integrity

e implementation and testing
ebuild the Initial Operational
capability

etest the Initial Operational
Capability

e|nitial Operational
Capability (software
system is finished for
beta testing in
productive
environment)

Transition

estarts after beta testing is completed and
the system is finally deployed

ecorrect defects, prepare the user site for
the new software;

e create user manuals and other
documentation; provide user consultancy;
e conduct a post project review

® No requirements, analysis
efinish implementation and
complete test workflows

emodify design if problems arise in
beta testing

euser acceptance testing (user
community)

eProduct Release (the
product is accepted
into the user
community)

5/80

Inception: conditions to attain for the Life Cycle Objectives

Conditions of satisfaction

Deliverable

The stakeholders have agreed the
project objectives

System scope has been defined and
agreed with the stakeholders

Key requirements have been captured and
agreed with the stakeholders

Cost and schedule estimates have been
agreed with the stakeholders

A business case has been raised by the
project manager

The project manager has performed a risk
assessment

Confirmation of feasibility through technical

studies and/or prototyping

An outline architecture

A vision document that states the
project’s main requirements,
| features and constraints

J

10% to 20% complete)

(A Project Glossary

(An initial use case model (only about

An initial Project Plan

Business Case

A Risk Assessment document or
database

(One or more throwaway prototypes

t\n initial architecture document

N

6/80

Elaboration: conditions to attain for the Life Cycle Architecture

Conditions of satisfaction Deliverable
A resilient, robust executable architectural baseline has been created m
The executable architectural baseline demonstrates that UML Static Model
important risks have been identified and resolved UML Dynamic Model
\UML Use Case Model y
The vision of the product has stabilized Vision document
The risk assessment has been revised Updated Risk Assessment
The business case has been revised and agreed with the stakeholders Updated Business Case

A project plan has been created in sufficient detail to enable a realistic Updated Project Plan
bid to be formulated for time, money and resources in the next phases

The stakeholders agree to the project plan
The business case has been verified against the project plan Business Case and Project Plan
Agreement is reached with the stakeholders to continue the project Sign-off document

7/80

Construction: conditions to attain for the Initial Operational Capability

Conditions of satisfaction Deliverable

The software product is sufficiently stable and of { The software product)

sufficient quality to be deployed in the user community The UML model

Test suite

The stakeholders have agreed and are ready for the User manuals
transition of the software to their environment \Description of this release)

The actual expenditures vs. the planned expenditures Project Plan
are acceptable

Transition: conditions to attain for the Product Release

Conditions of satisfaction Deliverable

Beta testing is completed, necessary changes l The software product '

have been made, and the users agree that the
system has been successfully deployed

The user community is actively using the product

Product support strategies have been agreed User support plan
with the users and implemented

[User manuals]

8/80

2. The requirements workflow

v Requirements: statements on what the system should do (functional) and how it
should do it (constraints, properties, non-functional)

<id> The <system> shall <function>

v Well-formed requirements:

requirements for an automated teller machine (ATM)

functional requirements:

1. The ATM system shall check the validity of the inserted ATM card.

2. The ATM system shall validate the PIN number entered by the customer.

3. The ATM system shall dispense no more than $250 against any ATM
card in any 24-hour period.

non-functional requirements:
1. The ATM system shall be written in C++.

2. The ATM system shall communicate with the bank using 256-bit
encryption.

3. The ATM system shall validate an ATM card in three seconds or less.
. 4. The ATM system shall validate a PIN in three seconds or less.
v Example: Y

9/80

v" Questions helping to identify actors:

To find actors ask: Who or what uses the system?

“Who or what uses or What roles do they play in the interaction?

interacts with the Who installs the system?

system?”

Who starts and shuts down the system?

Who maintains the system?
What other systems interact with this system?
Who gets and provides information to the system?

Does anything happen at a fixed time?

v" Questions helping to identify use cases:

What functions will a specific actor want from the system?

Does the system store and retrieve information? If so, which actors trig-
ger this behavior?

Are any actors notified when the system changes state?

Are there any external events that affect the system? What notifies the
system about those events?

10/80

v The UML use case diagram:

X

Custom

er

AN
e

Mail order system

ShipProduct

PlaceOrder

CancelOrder

CheckOrder
Status

Send
Catalog

X

Shipping
Company

X

Dispatcher

v The project glossary: is a list of key business terms, related definitions, synonyms
(different terms for the same concept — use a unique preferred term) and homonyms
(same term for different concepts — qualify such terms)

v Use case specification: (a) pre/post-conditions, things that must be true before/after
the start/end of the use case; (b) flow of events, steps in the use case.

11/80

Term Definition
Catalog A listing of all of the products that Clear View Training currently
offers for sale
Synonyms: None
Homonyms: None
Checkout An electronic analogue of a real-world checkout in a supermarket
A place where customers can pay for the products in their shopping
basket
Synonyms: None
Homonyms: None
Clear A limited company specializing in sales of books and CDs
View Synonyms: CVT
Training Homonyms: None
Credit A card such as VISA or Mastercard that can be used for paying for
card products '
Synonyms: Card
Homonyms: None
Customer A party who buys products or services from Clear View Training

Synonyms: None
Homonyms: None

12/80

v Anatomy of a detailed use case:

Use case: PayVAT

ID: UCH

Actors:
Time
Government

Preconditions:
1. Itis the end of a business quarter.

Flow of events:

1. The use case starts when it is the end of the
business quarter.

2. The system determines the amount of Value
Added Tax (VAT) owed to the Government.

3. The system sends an electronic payment to
the Government.

Postconditions:
1. The Government receives the correct amount
of VAT.

13/80

v" Branching within a flow: IF

Use case: ManageBasket

ID: UC10

Actors:
Customer

Preconditions:
1. The shopping basket contents are visible.

Flow of events:
1. The use case starts when the Customer selects
an item in the basket.
2. If the Customer selects “delete item”
2.1 The system removes the item from
the basket.
3. If the Customer types in a new quantity
3.1 The system updates the quantity of the
item in the basket.

Postconditions:
1. The basket contents have been updated.

v" Alternative flows: e.g. for things happening under conditions potentially occurring at
any step of the use case

14 /80

Use case: DisplayBasket

ID: UC11

Actors:
Customer

Preconditions:
1. The Customer is logged on the system.

Flow of events:

1. The use case starts when the Customer selects
“display basket”.

2. If there are no items in the basket
2.1 The system informs the Customer that

there are no items in the basket yet.

2.2 The use case terminates.

3. The system displays a list of all items in the
Customer’s shopping basket including product
ID, name, quantity and item price.

Postconditions:

Alternative flow 1:
1. At any time the Customer may leave the
shopping basket screen.

Postconditions:

Alternative flow 2:

1. At any time the Customer may leave the system.

Postconditions:

15/80

v" Repetition within a flow: FOR

n. For (iteration expression)
n.1. Do something
n.2.Do something else
n.3. ..

n+1.

Use case: FindProduct

ID: UC12

Actors:
Customer

Preconditions:

Flow of events:

The Customer selects “find product”.

The system asks the Customer for search criteria.

The Customer enters the requested criteria.

The system searches for products that match the Customer’s criteria.

If the system finds some matching products then

5.1. For each product found
5.1.1. The system displays a thumbnail sketch of the product.
5.1.2. The system displays a summary of the product details.
5.1.3. The system displays the product price.

6. Else
6.1. The system tells the Customer that no matching products could

be found.

S

Postconditions:

Alternative flow:
1. At any point the Customer may move to different page.

Postconditions:

16 /80

v" Repetition within a flow: WHILE

Use case: ShowCompanyDetails

ID: UC13

Actors:
Customer

n. While (Boolean condition) Preconditions:

n.1. DO Something Flow of events:
. 1. The use case starts when the Customer selects
n.2. Do something else

“show company details”.
n.3... 2. The system displays a web page showing the
n+1. company details.
3. While the Customer is browsing the company details
3.1. The system plays some background music.
3.2. The system displays special offers in a
banner ad.

Postconditions:

v Requirements tracing: many-to-many relationship between requirements and use
cases, how to discover missing use cases or missing requirements.

. Use case
Requirements B ucC1 ucCz ucCs3 UCs4
tracing links R1 X
requirements in the =

. o R2 X X
System Requirements £

Pr— £ R3 X
Specification to the —
use case model. 5 R4 X

Rs5 X

17 /80

v" Actor generalization: the descendent actors inherit the roles and relationships to use
cases held by the parent actor

Sales system

Sales system

N
T ListProducts i \
Purchaser\ OrderProducts

AcceptPayment

AcceptPayment
/ — CalculateCommission
———_———_

SalesAgent CalculateCommission

ListProducts

Customer OrderProducts

il

Customer SalesAgent

il

v’ Use case generalization: the child use case inherits features from the parent use case,
can add or change (override) inherited features (pre/post condition, steps in flow...)

Sales system

i FindProduct

Customer

Feature is ... Typographical convention

Inherited without change from the parent Normal text
FindBook Overridden Italic text
Added Bold text

i

|

18/80

Child use case: FindBook

Child use case: FindCD

ID: UC16 ID: UC17
Parent Use Case ID: Parent Use Case ID:
uci2 uci2
Actors: Actors:
Customer Customer
- Preconditions: Preconditions:
Use case: FindProduct
Flow of events: Flow of events:
ID: UC12 1. The Customer selects “find book”. 1. The Customer selects “find CD”.
Actors: 2. The system asks the Customer for book search criteria 2. The system asks the Customer for CD search criteria
Customer consisting of author name, title, ISBN, or topic. consisting of artist, title, or genre.
3. The Customer enters the requested criteria. 3. The Customer enters the requested criteria.
Preconditions: 4. The system searches for books that match the 4. The system searches for CDs that match the
Customer's criteria. Customer's criteria.
Flow of events: e y 5. If the system finds some matching books then 5. If the system finds some matcing CDs then
1. The Customer selects “find product”. 5.1. The system displays a page showing details 5.1. The system displays a page showing details
2. The system asks the Customer for search criteria. of a maximum of five books. of a maximum of ten CDs.
3. The Customer enters the requested criteria. 5.2. For each book on the page the system displays 5.2. For each CD on the page the system displays
4. The system searches for products that match the the title, author, price, and ISBN. the title, artist, price, and genre.
Customer’s criteria. 5.3. While there are more books 5.3. While there are more CDs
5. If the system finds some matching products then 5.3.1. The system gives the Customer the 5.3.1. The system gives the Customer the
5.1. The system displays a list of the matching option to display the next page of books. option to display the next page of CDs.
products. 6. Else 6. Else
6. Else 6.1. The system redisplays the “find book” 6.1. The system redisplays the “find CD” search
6.1. The system tells the Customer that no matching search page. page.
products could be found. 6.2. The syg.tem tells the Customer that no 6.2. The sy.stem tells the Customer that no
matching products could be found. matching products could be found.
Postconditions: Postconditions: Postconditions:
Alternative ﬂf"": . Alternative flow: Alternative flow:
1. Atany point the Customer may move to a different page. 1. At any point the Customer may move to a different 1. At any point the Customer may move to a different
page. page.
Postconditions: Postconditions: Postconditions:

v The «include» relationship between use cases includes the behavior of a supplier use
case into the flow of a client use case. The client use case is not complete without all
of its supplier use cases. The supplier use cases may or may not be complete (behavior
fragment, it is not instantiable, it cannot be triggered directly by actors)

19/80

Personnel system

ChangeEmployeeDetails). .
~o . :r/no
o ‘{({O’@J,

/
-

i

DeleteEmployeeDetails

«dnclude» >
ViewEmployeeDetails)--- L. FindEmployeeDetails

«include» factors B
out steps common to
several use cases into

a separate use case
which is then

included.

v’ The «extend» relationship between use cases adds new behavior to a base use case.
The base use case is complete without its extensions (that usually are not complete).

X

Librarian

Library system

ReturnBook
RN
~eng,

BorrowBook

e
AN

FindBook

L

~
| -ﬁ

20/80

v The extension points are added to an overlay on top of the flow of events, without
effects on the numbering of the flow of events of the base use case.

ReturnBook

ReturnBook ID: UC9

antension points Actors:
overdueBook Librarian

/\ Preconditions:
! 1. Avalid Librarian is logged on to the system.
Flow of events:
: 1. The Librarian enters the borrower’s ID number.
«extend» 2. The system displays the borrower’s details

(overdueBook) including the list of borrowed books.
; 3. The Librarian finds the book to be returned in
the list of books.
<overdueBook>

4. The Librarian returns the book.
5. ..
Postconditions:

The book has been returned.

v Multiple insertion segments can be added.

v" Conditional extensions are also possible. A condition is a Boolean expression.

21/80

ReturnBook Extension use case: IssueFine

extension points ID: UC10
overdueBook
payFine

Insertion segment 1:
1. The Librarian uses the system to record and
print a fine.

Insertion segment 2:
1. If the borrower chooses to pay the total fine

on the spot
. 1.1. The Librarian accepts payment for the
«extend» fine.
(overdueBook, payFine) 1.2,

ReturnBook

extension points
overdueBook
payFine

«extend» «extend»
(overdueBook) (overdueBook, payFine)
[firstOffence] [ffirstOffence]

’ \
’ \
’ \
’
’
’ \

IssueWarning

22180

2. The Analysis workflow

v The aim is to produce an analysis model on what the system needs to do, leaving
details on how it will do it to the design workflow

v’ Key artefacts produced: analysis classes (model key concepts in the business domain)
and use case realizations (illustrate how instances of the analysis classes can interact
to realize system behavior specified by a use case).

«analysisPackage» «analysisPackage»
P1 P3
| | B Lt (D i e
S L T

«analysisModel» |+~ «analysisSystem» |

Model N System N

«analysisPackage»
P4

«analysisPackage»

P2

23/80

v" Analysis workflow

O
[] Ol
Architect Architectural analysis
. \
[J o0
Use case engineer Analyze a use case
N\
O

[] o0 - Q0

Component engineer Analyze a class Analyze a package

v Only classes part of the vocabulary of the problem domain (no design classes such as
communications of database access classes, unless the problem is about that)

v" Distinguish between the problem domain (business requirements) and the solution
domain (design considerations)

v" Is the model useful to all the stakeholders (subjects with a business interest)

24180

v" UML object notation:

dependency
relationship:

jimsAccount:Account

number : int = 1234567
owner : String = “Jim Arlow”
balance : double = 300.00

a change to the class
affects the object

v UML class notation:

«instantiate»

Account

number : int
owner : String
balance : double

deposit()

7 withdraw()

A

«instantiate»

«instantiate»

jimsAccount:Account

fabsAccount:Account

astridsAccount:Account

number = 801
owner = “Jim Arlow”
balance = 300.00

number = 802
owner = “Fab”
balance = 1000.00

number = 803
owner = “Astrid”
balance = 310.00

25/80

Window
{author = Jim,
status = tested}

+size : Area = (100,100)
#visibility : Boolean = false
+defaultSize : Rectangle
#maximumSize : Rectangle
-xptr : XWindow*

+create()
+hide()

+display(location : Point)
—attachXWindow(xwin : XWindow™)

v UML class notation:

v' Class name is CamelCase (no spaces or special symbols because they are used in
languages)

v" Avoid abbreviations of class name

visibility name multiplicity : type = initialValue
v" Attribute compartment:

26/80

Adornment Visibility Name Semantics

+ Public visibility Any element that can access the class can access
any of its features with public visibility

- Private visibility Only operations within the class can access
features with private visibility

Protected visibility ~ Only operations within the class, or within children
of the class, can access features with protected
visibility

~ Package visibility Any element that is in the same package as the

class, or in a nested subpackage, can access any of
its features with package visibility

v Visibility adornment:

v Initial values and visibility are not used in the analysis model.

v MU'tlpllClty multiplicity expression
(number of things) address [3]: String an address is composed of an
IS more used in array or three Strings
_deSIQn’ sqmetlmes name [2..*] : String a name is composed of two ot
In ana|y5|5- more Strings
emailAddress [0..1] : String an emailAddress is composed

of one String or null

27180

visibility name (parameterName : parameterType, ...) : returnType

v' Operation compartment:

v" Instance and class scope (one version shared by all objects):

BankAccount

—accountNumber : int
—count:int=0

+create(aNumber : int)
+getNumber : int
—incrementCount()
+getCount() : int

v" Activity “analyze a use case”: creating analysis classes and use case realizations

v" Analysis class is in the problem domain (in which the need for the system arises)

28/80

—

Use case model ",
] R Use case e

\\ engineer /,,’ nalysis class

Supplementary Tl L
requirements
-7 .
<7 Analyzea .
use case

Business model

Use case
‘ realization

Architecture
description

BankAccount

number
owner
balance

deposit()
withdraw()
calculatelnterest()

v Anatomy of an analysis class:
29/80

e its name reflects its intent;

e it IS a crisp abstraction that models one specific element of the problem domain;
e it maps on to a clearly identifiable feature of the problem domain;

e it has a small, well-defined set of responsibilities;

e it has high cohesion (cohesive set of responsibilities towards the same goal);

e it has low coupling to other classes (number of relationships).

v Beware of large classes, functoids, omnipotent classes, deep inheritance

v How to find analysis classes: noun and noun phrases indicate candidate classes or

attributes, whereas verb and verb phrases indicate candidate responsibilities.

v" CRC (Clas Responsibilities Collaboration):

Class name: BankAccount

Responsibilities:
Maintain balance

Collaborators:
Bank

30/80

v" Link in object diagram: it allows messages to be sent from one object to the other

(pointer, references, etc.)

Object diagrams

are snapshots of an
executing 00 system.

chairman

downHillSkiClub:Club

secretary

jim:Person

member

fab:Person

christian:Person

:PersonDetails

v" Association in class diagram: relationship between classes
(a link is an instantiation of an association)

Objects are

instances of classes,
and links are instances
of associations.

Club Person
A\
A | A
<4nstahﬁaie» «instantiate» <4nstahﬁate»
' . chairman '
downHillSkiClub:Club ! jim:Person

:Address

31/80

v “A Company employs many Persons (a black triangle denotes the reading direction),
or “Each Person works for one Company” at any point in time.

Over time a Person object might be employed by a sequence of Company objects.

Association names
are verb phrases that

employs p
indicate the semantics Company - Person

of the association.

v" Associations can have roles instead of association name:

employer employee
Company] - Person

32/80

v Multiplicity (there is not “default” multiplicity if it is not explicitly stated):

Adornment Semantics

0.1 Zero or 1

1 Exactly 1

0.* Zero or more

* Zero or more

1.% 1 .0r more

1.6 1to 6

1..3,7..10,15, 19..* 110 3 or 7 to 10 or 15 exactly or 19 to many

Company

employer

employee

v" Reflexive associations

subdirectory
0.* 1 0.”
Directory File
0..1
parent
autoexec
¢
| config
Windows My Documents Corel To John

Command

1

7

Person

1 1.*
owner operator

0..” 0."

BankAccount

33/80

House

address

v Implementation of association as an attribute

v" Association class (association that is also a class)

Company

Person

Job

salary:double

1

v Dependency (between classes, packages, object and classes)

v The «use» dependency:

A

«|jse»

________________ >

foo(b:B)
bar():B
doSomething()

Address

House

address:Address

public class House
private Address address;

{
}

An operation of class A needs a parameter, returns a value, uses an object of class
B somewhere in its implementation, but not as an attribute

34/80

v" The «call» dependency: an operation of class A invokes an operation of class B

v" The «parameter» dependency: in class B, a parameter or returned value of class A
v The «send» dependency: a class A transfers data to a class B

v" The «intantiate» dependency: an instance of class A

v’ The «access» dependency: a package P accesses the public content of package Q
(Packages are used in UML to group things)

v The «import» dependency: the namespace of a package P is merged to the
namespace of package Q (you do not need a qualified element name)

v" Generalization: specialized (or extended) classes inherit attributes, operations,
relationships, constraints. Overriding of operations (same signature)

Shape

/\ Shape draw(g : Graphics)

A getArea() : int
getBoundingArea() : int

Square Circle Triangle %

uonez|eieush
uonezieioads

Square Circle

T - draw(g : Graphics) draw(g : Graphics)
\/ A generalization hierarchy getArea() : int getArea() : int

35/80

Shape

draw(g : Graphics)
getArea() : int
getBoundingArea() : int

1

Square Circle
draw(g : Graphics) draw(g : Graphics)
. . tA tint tA tint
v" Abstract class cannot be instantiated. gethreal) :in gethreal) :in
Shape
Polymorphism draw(g : Graphics)
means “many forms”. getArea() : int
Polymorphic getBoundingArea() : int
operations have many Z%
implementations.
Square Circle
draw(g : Graphics) draw(g : Graphics)
. . getArea() : int getArea() : int
v" Polymorphism:

there are two implementations of the Shape class, I.e., its operations have many
forms (polymorphic) depending on the class of its instance (Square or Circle)

v Overriding concrete operations is considered a bad style.

36/80

v Dynamic view: use case realizations show how instances of the analysis classes
Interact to realize the functionality of the system, via the following elements:

Element

Purpose

Analysis class diagrams

Interaction diagrams

Special requirements

Use case refinement

Show the analysis classes that interact to realize the
use case

Show collaborations and interactions between specific
instances that realize the use case — they are “snapshots” of
the running system

The process of use case realization may well uncover new
requirements specific to the use case — these must
be captured

New information may be discovered during realization that
means the original use case has to be updated

v" Types of interaction diagrams: communication diagram and sequence diagram
(dynamic interaction between instances in terms of messages).

Message flow Semantics
> Procedure call — the sender waits until the receiver has finished
This is the most common option
Asynchronous communication — the sender carries on as soon as
the message has been sent; it does not wait for the receiver
This is often used when there is concurrency
__________________________ > Return from a procedure call — the return is always implicit in a

procedure call, but it may be explicitly shown using this arrow

37/80

v Lifeline: a participant in an interaction, an instance of a specific classifier (a classifier
Is a type of thing, such as actor, class, use case; an instance is a concrete example of
such thing such as a specific actor, class, use case).

jimsAccount [id = "1234"] : Account

;w—)\.______ ——
name selector type
1
ym:PerS{Jn :OrderProcessing Orders.jar g’
name classifier

v" Selector: a Boolean condition to select a single instance

v" Interaction diagrams are not verbatim transcriptions of a use case, they are
illustrations of how the use case behavior is realized by analysis classes

v" Use case and sequence diagram

38/80

Use case: AddCourse

ID: UCS8

Actors:
Registrar

Preconditions:
The Registrar has logged on to the system.

Flow of events:

1. The Registrar selects “add course”.

2. The system accepts the name of the new course.
3. The system creates the new course.

Postconditions:
A new course has been added to the system.

sd AddCourse)

synchronous __~ liteline
message
:RegistrationManager
:Registrar

object creation message

N addCourse("UML") >

The Registrar selects
"add course".
N «create»
The system creates e uml:Course
the new Course. J -
< ase S _:..\ | : \
notes can form ! \ i actvation ' objectis
a "script" ‘ message X : created at
describing the E return E v this point
flow : : '

39/80

v’ State invariants and constraints: a classifier can have a state machine describing the
life cycle of its instances in terms of states and events causing transition between states

v if a message causes a state change, lifelines can show the state of the instances.
Example of constraints: the order shall be delivered no more than 28 days after
payment has been received.

sd ProcessAnOrdej

% :OrderManager :DeliveryManager

:Customer . .

f raiseOrder() ' E

i < :

' : «create» :

! ' :Order '

E state invariant H E

label : ! - :

AN + acceptPayment() :

constraint A ; ’E acceptPayment() : :

\ E E deliver() ; '

{B —A<=28days} . f : ' >

: : - deliver() !

- : ,

57 S S — 5

40/80

v' Combined fragment and operators: combined fragments are areas of the sequence
diagram; the operator determines how its operands are executed, whereas the guard

condition determines whether their operand execute.

sd OperatorSyntax J
A B :.C
a() : %
! g combined fragment
name opera;tor [guardCondition1] :) :
N " b() : operand
>
[guardCondition2] . :
o() \\ ' operand
: \ any guard conditions must
' be placed above the first
message in the operand

sd OptAndAltSyntax)
if (condition1) then A B :.C D
operand 1 : : : :
else if (condition2) then opt [condition] * J i
operand 2 ' op1() R : i do this if condition is true
else if (conditionN) then alt : [condition1]
operand N ; op2() K do this if condition1 is true
else IR et ettt a ettt i
! [condition2] : ! '
operand M : 0p3() : R ; do this if condition2 is true
else] 3T
op4() H ! do this if none of the other
. conditions are true

41/80

Use case:ManageBasket

sd ManageBasket)

ID: 2

Brief description:
The Customer changes the quantity of an item in the basket.

Primary actors:
Customer

Secondary actors:
None.

X

:Customer

:ShoppingBasket item:ltem

getltem ()

- -

alt)

Preconditions:
1. The shopping basket contents are visible.

Main flow: ,

1. The use case starts when the Customer selects an item in the
basket.

2. If the Customer selects "delete item"
2.1 The system removes the item from the basket.

3. If the Customer types in a new quantity

3.1 The system updates the quantity of the item in the basket.

Postconditions:
None.

Alternative flows:
None.

[changeQuantity]
setQuantity()

L el e

opt[item.quantity

=o17)

U DI, [P NI

«destroy»

X

L L

[deleteltem]

«destroy»

-l - -

X

b R T T P

e B B LT et R __---..--..-.....-‘r

42 /80

sd LoopAndBreakSyntax)

_loop miR— A
times then v
“while condition '
is true loop loop min, max [?ondition])

op1()

e

loop while
condition loop [condition]

P E—— T
Is true
R

op2()

on breaking
out of the loop
do this

} this does not
happen if break
executes

break op3()

break must —
be global —
relative
to loop

op4()

RN U SRR A N SRR R A SUNRR

R I N L LYY

43/80

sd FindCourse(name : String) : Courssﬂ

:RegistrationManager| | courses course:Course
H ' '
]]]
am i '
) 1]
] L}
loop [for each course in coursesﬂ courseName = getName () :
. L]
; >,
L 1
1 L)
break [name = courseNzme]) : :
] 1
] 1
course ' :
AR EEE e B T L PP TP EEE ' i
:]
null ' ‘
<— -------------------------------------- .TJ : :
1 1

44 /80

Operator Long name Semantics

opt option There is a single operand that executes if the condition is true
(like if ... then)

alt alternatives The operand whose condition is true is executed. The keyword else
may be used in place of a Boolean expression (like select ... case)

loop loop This has a special syntax:
loop min, max [condition]
loop min times, then while condition is true, loop (max — min) times

break break If the guard condition is true, the operand is executed@he rest of
the enclosing interaction

ref reference The combined fragment refers to another interaction

par parallel All operands execute in parallel

critical critical The operand executes atomically without interruption

seq weak All operands execute in parallel subject to the following constraint:

sequencing events arriving on the same lifeline from different operands occur in
7 the same sequence as the operands occur

This gives rise to a weak form of sequencing — hence the name

strict strict The operands execute in strict sequence

sequencing
neg negative The operand shows invalid interactions

Use this when you want to show interactions that must not happen

v' Communication diagram: it is similar to sequence diagram except that there are
direct links between lifelines

45 /80

sd AddCourses)

sequence number message

N/

1: addCourse("UML") —>
2: addCourse("MDA") —»

uml:Course

:RegistrationManager

7

:Registrar link

mda:Course

lifeline

T 1.1: «create»

l 2.1: «create»

object creation
message

iteration specifier

A

\
sd PrintCourses) \ iteration clause
r

1.1 *[fori=1ton]: printCourse(i) —

1: printCourses() —

N

:Registrar

:RegistrationManager

[i]:Course

l 1.1.1: print()

46 /80

v" Reusable interaction fragment

sd LogOnRegistrar)

X

:Registrar :SecurityManager

T

~ logOn(userName, password)

authenticate(userName, password)

self-delegation: a
lifeline sends a
message to itself, it is
v : anested activation

sd ChangeStudentAddress]

X

:Registrar |:SecurityManager| | :RegistrationManager|| theStudent:Student
I—'I ' i '

ref LogOnRegistrar)
[———————__ interaction

occurrence

T
1
L)

theStudent = findStudent(name)

setAddress(newAddress) U

T ' s

L L L R .

A J

47180

v" Parameters in reusable interaction fragment

sd FindCourse(name : String) : Course)

X

:Registrar :RegistrationManager

findCourse(name) '

sd RegisterJimForUMLCourse)

X

:Registrar :RegistrationManageil theCourse:Course

ref
—‘—J theStudent = FindStudent("Jim")

ref

theCourse = FindCourse{ "UML")

register(theStudent) .

- .- -

48 /80

v" Gates: inputs and outputs of interactions outside the frame

gates

sd FindStudent]

| :RegistrationManager]

findStudent(name) s

3 |
S — |

sd FindCoursel

findCourse(name) '

[:RegistrationManager]

"’ |
B

sd RegisterJimForUMLCours§

X

Registrar [:RegistrationManageﬂ | theCourse:Course
D theStudent = findStudent("Jim") et T f
- 2 FindStudent E
: gate ! :
|j theCourse = findCourse{ "UML") ref i
N FindCourse | :

D register(theStudent)

49 /80

sd GetStudentsOnUMLCourse)

X

:Registrar I :RegistrationManagerJ

getRegisteredStudents("UML") :

uml = findCourse("UML")

hY

[ref) ~

FindCourse
k.

M
1
]
]
1
]
1
L]
[l
'
1
L}
1
L}
i
¥
]
L
L]
L}
'
L]
L]
L]
L]
L]
L}
|
i

I._---__--....-_-_-_-------_-

theStudents = getStudents()

ok
)
P
-

Send letter \
precondition: know topic for letter

postcondition: letter sent to address

initial node
action node
«localPrecondition» | [Write letter]/
address is known \ edge
(Address Ietterj
«localPostcondition} * control flow
letter is addressed V

[Post letter

)
acnvity)\ (% ___final node /
v' Activity diagrams:

50/80

Syntax Name

Semantics

o — Initial node

Indicates where the flow starts when an activity is invoked

Activity final
© node

Terminates an activity

8 Flow final node

Terminates a specific flow within an activity - the
other flows are unaffected

SIPOU [eury]

<decisioninputs Decision node
decision condition

e

The output edge whose guard condition is true is traversed

May optionally have a «decisionlnput»

E C Merge node

Copies input tokens to its single output edge

' _"I: Fork node

Splits the flow into multiple concurrent flows

{join spec}

v" Control nodes:

Join node

N o

Synchronizes multiple concurrent flows

May optionally have a join specification to modify its
semantics

‘—————_———\

- Emy S oy,

\————---——‘

v Call action nodes:

[Create Orderrh J call an activity

[Close Order J call a behavior

analysis

\ .
I (getBalance():double }— operation name h
| | (Account::) ——— class name
| I (optional)
I \ f Get balance ————— node name
(Account:: getBalance():double) +—— operation name
I~ (optional) >
| if self.balance <= 0: programming
i self.status = 'INCREDIT' I(anguigeh \
| else e.g., Python
\ self.status = 'OVERDRAWN')

- am o e S

d_esign

’————_—_—~_-——__——\

/

call an
operation

N e o s TN s

-

- N s S b e S s S

51/80

. Product process
Process mail t \ @duct process \ \
Location

keyword [(ot max J gggé?tion New _Y°'k : London _
/ Design new Design Marketing Manufacturing
else [is junk] fork roduct object flow Objecj node
Design new T
decision node \\l/ \v prgduct ProductSpecification
: (Market] [Manufacture] : T
[Open mail] L Bin mail) proium pro\?’uc‘ [Ma,kei pmductJ Mapr:u;liu’:érre]
\./\1)
merge join Sell product
Qde / K / \ /
decision/merge nodes fork/join nodes object nodes

input parameter

\ / Bespoke product process \
Delivery

CustomerRequest Marketing Manufacturing
Design bespoke ProductSpecification
I product > P
Set of output
BusinessConstraint . parameter
I Y/
Order Accept Manufacture \
payment product Order
[Delivered]
object in state object flow ¥
Order \

Vi

A\

[Deliver
]] [Paid] ’°dy
v" 1/O params and object in state:

52/80

3. The Design workflow

Ince;lation Elabolration Colnstructilon Tranéition
Requirements |
/ _L
Analysis : : :
/ T~ |
Design

Implementation

L))

Test

Preliminary I 12 In In+1 In+2 Im Im+1
iterations

v While Requirements and Analysis workflows focus on the problem domain from the
point of view of the system stakeholders, Design workflow focuses on the solution
domain to provide: design subsystems, design classes, interfaces, use case realizations
design, deployment diagrams.

53/80

1
A

Use case model

—1

A

Requirements
model

—1

A

Analysis model

|

Architecture
description

-
-
L.
-

-
-
-
-
-
-

.3 Architectural

4
’

O
[]

Architect

’
’
. P
’ -
’ Phe
-
.
L
-
-
.
‘
.
> H
-

design

-
-

-

-

-
.
-
.
A
- A

-~
~
-
~
~
~
-~
~
-
~
~
.
~
[N
)
I F
.
.
-~
\!

-

«Subsystem»

Subsystem
[outlined]

O

7 Interface
[outlined]

Design class
[outlined]

—

Deployment model
[outlined]

Architecture
description

v" Design classes and interfaces are first outlined and the sufficiently detailed to serve

as a good basis for creating source code

v Some design classes are refinements of analysis classes. Other design classes are
based on the solution domain (e.g. utility classes, communication middleware, db)

54 /80

Use case realization . O
—design
g [] 7 O
Component B Interface
- A engineer et [complete]
, TTtea
Design class **
[outlined] T)
L Design
PPt as aclass “-_‘
O |
Interface A s
[outlined]
et Design class
[complete]
Analysis class
[complete]
Problem Analysis Design Solution
domain classes classes domain

java.util

55/80

v Complete the set of attributes and fully specify them including name, type, visibility
and (optionally) a default value.

v Turn the operations specified in the analysis class into a complete set of one or more
methods.

BankAccount BankAccount
name «trace» —-name : String
number SR G EEE e —number : String
balance —-balance : double =0
deposit() +BankAccount(name:String, number:String)
withdraw() +deposit(m:double) : void
calculatelnterest() +withdraw(m:double) : boolean

+calculatelnterest() : double

+getName() : String

+setName(n:String) : void

+getAddress() : String

+setAddress (a:String) : void

+getBalance() : double

+BankAccount(n:String, a:String, m:double)

v A cohesive class has a small set of responsibilities that are closely related. Every
operation, attribute, and association of the class is designed for the small, focused set
of responsibilities.

56 /80

v" Operations offer a single primitive, atomic service. Do not offer multiple ways of
doing the same thing, e.g. BankAccount class with operations for both single and
multiple deposits (—maintenance and consistency problems).

v" Refine analysis relationships: type, multiplicities, role names, navigability.

Computer

Aggregation

Some objects are weakly
related, like a computer and

its peripherals

Printer

Composition

Some objects are strongly
related, like a tree and
its leaves

Mouse P Button

57/80

v' The parts can exist (or not) independently of the aggregate, it is possible to share parts
between aggregates.

v The parts can only belong to one composite at a time, no shared ownership; the
composite has responsibility the creation/destruction or release of its parts.

v Multiplicity and constraints, semantics of collection (properties)

1 {ordered} *
A <> B

Property Semantics

{sorted} The collection is sorted according to some key — the key may be specified
in the property, e.g. {sorted by name}

{indexed} Each element in the set is accessible via a numeric index
{set} Duplicates are not allowed in the collection

{lifo} “Last in, first out” — a stack where the last element placed on the stack is
the first element that can be taken off it

{queue} A queue where the first element placed on the queue is the first element
that can be taken off it

v" Interfaces and components: breaking up the system into subsystems and determining
their interactions via interfaces

58/80

v" The activity “design a use case” is about finding design classes, interfaces, components

that interact to provide the behavior specified by a use case.

1

A

Use case model

1

A

-
-

Requirements
model

1

A

-

Analysis model

1]

-
-
-
-
-
-

Design model

1

A

O
[]

Use case engineer

Design a
4 use case

Deployment model

v" Use case realization-design: design interaction diagrams and design class diagrams .

-
-
-

-
-
-3
-
-~
-
-

-
"-
-
-

..........
.......

- Use case realization
‘ —design

Design class
[outlined]

«Subsystem»

Subsystem
[outlined]

O

Interface
[outlined]

v Example of an analysis sequence diagram

sd AddCourse)

“add course”.

) e
The Registrar selects

A
The system creates

the new Course.

1
1]
—_—

% ‘RegistrationManager
:Registrar .

addCourse("UML")

«create»

uml:Course

v" In the corresponding design diagram, in the early stage of design, application layers
are visible (e.g. front-end/GUI and backend/DB),

60/80

sd AddCourse - design)

% :RegistrationUl ‘RegistrationManager :DBManager

:Reg'istrar :
™ addCourse("UML") > : E |
addCourse("UML") i |
P i

| = "UML" i \

--y-n-.l----Egy-r-s-?!-""--l-) uml:Course i :
save(uml) ' §

P I
G- mmmm e e e T ' |
< __________________________ _‘_‘ E H ! H

This illustrates the central mechanism for persistence ‘
that must be used throughout the system

v Example of a security system realized with active class (its object encapsulates its own
thread of control). It is made by four components: control box, siren, fire sensors, set
of security sensors. There is a controller card for each type of sensor. The system is
multithreaded.

v' Example of concurrency in sequence diagrams.
61 /80

/\

SecurityGuard

Fire

ActivateFireOnly

Security system

DeactivateSystem

ActivateAll

TriggerSensor

A

active class

\ 1 1

ControlBox

Siren

1

1

1

SecuritySensorMonitor

FireSensorMonitor

1

0.*

SecuritySensor

1

0..*

FireSensor

Intruder

62 /80

sd ActivateAll)
. :SecuritySensor :FireSensor - [s]:Security .
Secufity Guard :ControlBox Monitor Monitor [f]: FlrfaSensor Sensor Siren
activate() i E E E g
i i soundActivatedAlarm () i E R
; ! i 5 2
i par ; monitor(}) ! .J i i
loop 1, [ifire]) : — § 5 : !
: IoopﬁPreachflaneSensoq/J fire = mTﬂggmvd() i i X
5 ; : : > |
i break [fire]) : | 5 | |
' ' ! i i :
| critical | i i 5 !
' v fire() ' i ; E
< — ! ! |
i ; soundFireAlarm() ; ! '
H . H ! L S
[} 1 1 1 : ,ll
i : : R :
1 A A - : S S 5
E i monitor() ! i , |
i 7 i | :
loop 1, * [(lintruder) & (fire)]) ; ; ! i
H | : loop {fo'r each s in SecuritySen'soru E E
i | ; - intruder = isTriggered () ! i
| | z s | .
break [intruder & (lfire)]) | ; i |
' = : : : : !
i L’.. intruder() i soundintruderAlarm() | ; !
' 5 T i 5 T >
i ! , v i !
H E E E : i .
i = =, ! =

63/80

4. The Implementation workflow

Inception Elaboration Construction Transition

X

Requirements

~

Analysis

Design

Implementation

L))

Test

Preliminary I 12 In In+1 In+2 Im Im+1
iterations

v Implementation: to transform a design model into executable code
v" It begins in the elaboration and is the main focus of the construction phase.

v" Architectural implementation: to identify architecturally significant components and
to map them to hw.

64 /80

@)
[] ok
Architect

AN

Architectural implementation

et e e

e —

e
[]

System integrator

N

o

Integrate system

Jo

Component engineer

S N\
88— 1618

Implement a component

Perform unit test

— ‘
A O Architecture
D description
Deol .-7 [implementation
eployment model Architect and deployment]
i N A4 -7
A P2 I
.............. s v --nf Artifact
Design model Architectural "T-f-.__
.-7 implementation *._ § = ~"T--- . =
T R "> |«subsystem»
L Ny Component
Architecture a
description
[design and
deployment]
Node

65/80

v Deployment diagram

«device»
WindowsPC

«gxecution environment»
Firefox

0.* «http» 0.*

«device»
LinuxPC

P

Device: a physical type of device (PC, Server)
Execution environment: e.g. an Apache web server

\

association

node

«execution environment»
Apache

v" Types of artifacts: source files, executable files, scripts, database tables, documents,

outputs of previous

66 /80

	Slide 1
	Slide 2: 1. The Unified Process
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: 2. The requirements workflow
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: 2. The Analysis workflow
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 3. The Design workflow
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: 4. The Implementation workflow
	Slide 65
	Slide 66

