
UNIVERSITY OF PISA

COMPUTER ENGINEERING – SOFTWARE SYSTEMS ENGINEERING

UML and Unified Process
Mario G. C. A. Cimino – Antonio Luca Alfeo

1 / 80



1. The Unified Process

✓ A Software Development Process (SDP) defines the who, what, when, and how of 

developing software. The Unified Process (UP) is an industry standard SDP from the 

authors of the UML (Unified Modeling Language).

business 
requirements

Unified Process

Software

✓ UP is iterative and incremental: a large software development project is broken down 

into smaller “mini projects” called iterations. Each iteration generates a more 

complete version of the final system. The difference between two consecutive versions 

is called increment.

2 / 80



✓ Each iteration is made by five core workflows, with different emphasis:

● R: requirements – capturing what the system should do;

● A: analysis – refining and structuring the requirements;

● D: design – realizing the requirements in system architecture;

● I: implementation – building the software;

● T: test – verifying that the implementation works as desired.

✓ In a team work, it is often convenient to schedule iterations in parallel, according to 

dependencies between the artifacts of each iteration.

✓ UP consists of a sequence of four phases, terminating with related milestones:

3 / 80



UP: core workflows versus phases

✓ Inception: most of the work in early requirements and analysis 

Elaboration: the emphasis on requirements and analysis and some design 

Construction: mostly design and implementation, with related testing 

Transition: residual implementation and test

4 / 80



5 / 80

PHASE GOALS FOCUS MILESTONE

Inception ●capturing essential requirements to help 

scope the system

●feasibility: technical prototype to validate 

technology, proof of concept to validate

business requirements

●business case to demonstrate that the 

project will deliver quantifiable business 

benefit

●requirements and analysis 
workflows

●some design and implementation, 

to build technical prototype or

proof of concept

● no testing – throwaway prototype

●Life Cycle 

Objectives 

(requirements/ 

features/constraints, 

initial use cases)

→ see conditions and 

deliverable table

Elaboration ● create executable architectural baseline

●capture use cases to 80% functional 

requirements;
● refine the Risk Assessment;

●define quality attributes (defect discovery 

rates, acceptable defect densities, etc.);
● create detailed plan for construction;

●formulate a bid that includes resources, 

time, equipment, staff and cost.

●requirements, analysis and 
design workflows

●implementation: build the initial 

operational capability

●test the initial operational 

capability (alpha test, internal)

●Life Cycle 

Architecture

Construction ●complete requirements, analysis and 
design
● move from architectural baseline to the

final system
● maintain the system architecture integrity

● implementation and testing

●build the Initial Operational 

capability

●test the Initial Operational 

Capability

●Initial Operational 

Capability (software 

system is finished for 

beta testing in 

productive 

environment)

Transition ●starts after beta testing is completed and 

the system is finally deployed

●correct defects, prepare the user site for 

the new software;
● create user manuals and other

documentation; provide user consultancy;

● conduct a post project review

● no requirements, analysis

●finish implementation and 
complete test workflows
●modify design if problems arise in 

beta testing

●user acceptance testing (user 

community)

●Product Release (the 

product is accepted 

into the user 

community)



Inception: conditions to attain for the Life Cycle Objectives

6 / 80



Elaboration: conditions to attain for the Life Cycle Architecture

7 / 80



Construction: conditions to attain for the Initial Operational Capability

Transition: conditions to attain for the Product Release

8 / 80



2. The requirements workflow

✓ Requirements: statements on what the system should do (functional) and how it 

should do it (constraints, properties, non-functional)

✓ Well-formed requirements:

✓ Example:

9 / 80



✓ Questions helping to identify actors:

✓ Questions helping to identify use cases:

10 / 80



✓ The UML use case diagram:

✓ The project glossary: is a list of key business terms, related definitions, synonyms 

(different terms for the same concept → use a unique preferred term) and homonyms 

(same term for different concepts → qualify such terms)

✓ Use case specification: (a) pre/post-conditions, things that must be true before/after 

the start/end of the use case; (b) flow of events, steps in the use case.

11 / 80



12 / 80



✓ Anatomy of a detailed use case:

13 / 80



✓ Branching within a flow: IF

✓ Alternative flows: e.g. for things happening under conditions potentially occurring at 

any step of the use case

14 / 80



15 / 80



✓ Repetition within a flow: FOR

16 / 80



✓ Repetition within a flow: WHILE

✓ Requirements tracing: many-to-many relationship between requirements and use 

cases, how to discover missing use cases or missing requirements.

17 / 80



✓ Actor generalization: the descendent actors inherit the roles and relationships to use 

cases held by the parent actor

✓ Use case generalization: the child use case inherits features from the parent use case, 

can add or change (override) inherited features (pre/post condition, steps in flow…)

18 / 80



✓ The «include» relationship between use cases includes the behavior of a supplier use 

case into the flow of a client use case. The client use case is not complete without all 

of its supplier use cases. The supplier use cases may or may not be complete (behavior 

fragment, it is not instantiable, it cannot be triggered directly by actors)

19 / 80



✓ The «extend» relationship between use cases adds new behavior to a base use case. 

The base use case is complete without its extensions (that usually are not complete).

20 / 80



✓ The extension points are added to an overlay on top of the flow of events, without 

effects on the numbering of the flow of events of the base use case.

✓ Multiple insertion segments can be added.

✓ Conditional extensions are also possible. A condition is a Boolean expression.

21 / 80



22 / 80



2. The Analysis workflow

✓ The aim is to produce an analysis model on what the system needs to do, leaving 

details on how it will do it to the design workflow

✓ Key artefacts produced: analysis classes (model key concepts in the business domain) 

and use case realizations (illustrate how instances of the analysis classes can interact 

to realize system behavior specified by a use case).

23 / 80



✓ Analysis workflow

✓ Only classes part of the vocabulary of the problem domain (no design classes such as 

communications of database access classes, unless the problem is about that)

✓ Distinguish between the problem domain (business requirements) and the solution 

domain (design considerations)

✓ Is the model useful to all the stakeholders (subjects with a business interest)

24 / 80



✓ UML object notation:

✓ UML class notation:

dependency 

relationship:

a change to the class 

affects the object

25 / 80



✓ UML class notation:

✓ Class name is CamelCase (no spaces or special symbols because they are used in 

languages)

✓ Avoid abbreviations of class name

✓ Attribute compartment:

26 / 80



✓ Visibility adornment:

✓ Initial values and visibility are not used in the analysis model.

✓ Multiplicity 

(number of things) 

is more used in 

design, sometimes 

in analysis:

27 / 80



✓ Operation compartment:

✓ Instance and class scope (one version shared by all objects):

✓ Activity “analyze a use case”: creating analysis classes and use case realizations

✓ Analysis class is in the problem domain (in which the need for the system arises)

28 / 80



✓ Anatomy of an analysis class:
29 / 80



● its name reflects its intent;

● it is a crisp abstraction that models one specific element of the problem domain;

● it maps on to a clearly identifiable feature of the problem domain;

● it has a small, well-defined set of responsibilities;

● it has high cohesion (cohesive set of responsibilities towards the same goal);

● it has low coupling to other classes (number of relationships).

✓ Beware of large classes, functoids, omnipotent classes, deep inheritance

✓ How to find analysis classes: noun and noun phrases indicate candidate classes or 

attributes, whereas verb and verb phrases indicate candidate responsibilities.

✓ CRC (Clas Responsibilities Collaboration):

30 / 80



✓ Link in object diagram: it allows messages to be sent from one object to the other 

(pointer, references, etc.)

✓ Association in class diagram: relationship between classes 

(a link is an instantiation of an association)

31 / 80



✓ “A Company employs many Persons (a black triangle denotes the reading direction), 

or “Each Person works for one Company” at any point in time.

Over time a Person object might be employed by a sequence of Company objects.

✓ Associations can have roles instead of association name:

32 / 80



✓ Multiplicity (there is not “default” multiplicity if it is not explicitly stated):

✓ Reflexive associations

33 / 80



✓ Implementation of association as an attribute

✓ Association class (association that is also a class)

✓ Dependency (between classes, packages, object and classes)

✓The «use» dependency:

An operation of class A needs a parameter, returns a value, uses an object of class 

B somewhere in its implementation, but not as an attribute
34 / 80



✓ The «call» dependency: an operation of class A invokes an operation of class B

✓ The «parameter» dependency: in class B, a parameter or returned value of class A

✓ The «send» dependency: a class A transfers data to a class B

✓ The «intantiate» dependency: an instance of class A

✓ The «access» dependency: a package P accesses the public content of package Q 

(Packages are used in UML to group things)

✓ The «import» dependency: the namespace of a package P is merged to the 

namespace of package Q (you do not need a qualified element name)

✓ Generalization: specialized (or extended) classes inherit attributes, operations, 

relationships, constraints. Overriding of operations (same signature)

35 / 80



✓ Abstract class cannot be instantiated.

✓ Polymorphism:

there are two implementations of the Shape class, i.e., its operations have many 

forms (polymorphic) depending on the class of its instance (Square or Circle)

✓ Overriding concrete operations is considered a bad style.

36 / 80



✓ Dynamic view: use case realizations show how instances of the analysis classes 

interact to realize the functionality of the system, via the following elements:

✓ Types of interaction diagrams: communication diagram and sequence diagram

(dynamic interaction between instances in terms of messages).

37 / 80



✓ Lifeline: a participant in an interaction, an instance of a specific classifier (a classifier 

is a type of thing, such as actor, class, use case; an instance is a concrete example of 

such thing such as a specific actor, class, use case).

✓ Selector: a Boolean condition to select a single instance

✓ Interaction diagrams are not verbatim transcriptions of a use case, they are 

illustrations of how the use case behavior is realized by analysis classes

✓ Use case and sequence diagram

38 / 80



39 / 80



✓ State invariants and constraints: a classifier can have a state machine describing the 

life cycle of its instances in terms of states and events causing transition between states

✓ if a message causes a state change, lifelines can show the state of the instances. 

Example of constraints: the order shall be delivered no more than 28 days after 

payment has been received.

40 / 80



✓ Combined fragment and operators: combined fragments are areas of the sequence 

diagram; the operator determines how its operands are executed, whereas the guard 

condition determines whether their operand execute.

41 / 80



42 / 80



43 / 80



44 / 80



✓ Communication diagram: it is similar to sequence diagram except that there are 

direct links between lifelines

45 / 80



46 / 80



✓ Reusable interaction fragment

self-delegation: a 

lifeline sends a 

message to itself, it is 
a nested activation

47 / 80



✓ Parameters in reusable interaction fragment

48 / 80



✓ Gates: inputs and outputs of interactions outside the frame

49 / 80



✓ Activity diagrams:
50 / 80



✓ Control nodes:

analysis

✓ Call action nodes:

51 / 80

design



decision/merge nodes fork/join nodes object nodes

✓ I/O params and object in state:

52 / 80



3. The Design workflow

✓ While Requirements and Analysis workflows focus on the problem domain from the 

point of view of the system stakeholders, Design workflow focuses on the solution 

domain to provide: design subsystems, design classes, interfaces, use case realizations 

design, deployment diagrams.

53 / 80



✓ Design classes and interfaces are first outlined and the sufficiently detailed to serve 

as a good basis for creating source code

✓ Some design classes are refinements of analysis classes. Other design classes are 

based on the solution domain (e.g. utility classes, communication middleware, db)
54 / 80



55 / 80



✓Complete the set of attributes and fully specify them including name, type, visibility 

and (optionally) a default value.

✓Turn the operations specified in the analysis class into a complete set of one or more 

methods.

✓ A cohesive class has a small set of responsibilities that are closely related. Every 

operation, attribute, and association of the class is designed for the small, focused set 

of responsibilities.

56 / 80



✓ Operations offer a single primitive, atomic service. Do not offer multiple ways of 

doing the same thing, e.g. BankAccount class with operations for both single and 

multiple deposits (→maintenance and consistency problems).

✓ Refine analysis relationships: type, multiplicities, role names, navigability.

57 / 80



✓ The parts can exist (or not) independently of the aggregate, it is possible to share parts 

between aggregates.

✓ The parts can only belong to one composite at a time, no shared ownership; the 

composite has responsibility the creation/destruction or release of its parts.

✓ Multiplicity and constraints, semantics of collection (properties)

✓ Interfaces and components: breaking up the system into subsystems and determining 

their interactions via interfaces

58 / 80



✓ The activity “design a use case” is about finding design classes, interfaces, components 

that interact to provide the behavior specified by a use case.

✓ Use case realization-design: design interaction diagrams and design class diagrams .

59 / 80



✓ Example of an analysis sequence diagram

✓ In the corresponding design diagram, in the early stage of design, application layers 

are visible (e.g. front-end/GUI and backend/DB),

60 / 80



✓ Example of a security system realized with active class (its object encapsulates its own 

thread of control). It is made by four components: control box, siren, fire sensors, set 

of security sensors. There is a controller card for each type of sensor. The system is 

multithreaded.

✓ Example of concurrency in sequence diagrams.
61 / 80



62 / 80



63 / 80



4. The Implementation workflow

✓ Implementation: to transform a design model into executable code

✓ It begins in the elaboration and is the main focus of the construction phase.

✓ Architectural implementation: to identify architecturally significant components and 

to map them to hw.

64 / 80



65 / 80



✓ Deployment diagram

Device: a physical type of device (PC, Server) 

Execution environment: e.g. an Apache web server

✓ Types of artifacts: source files, executable files, scripts, database tables, documents, 

outputs of previous

66 / 80


	Slide 1
	Slide 2: 1. The Unified Process
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: 2. The requirements workflow
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: 2. The Analysis workflow
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53: 3. The Design workflow
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64: 4. The Implementation workflow
	Slide 65
	Slide 66

